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We analyze the exit time (first passage time) problem for the Ornstein- 
Uhlenbeck model of Brownian motion. Specifically, consider the position X(t) of 
a particle whose velocity is an Ornstein-Uhlenbeck process with amplitude a/e 
and correlation time e 2, 

dX/dt=aZ/~, dZ/dt= -Z /e  2 + 21/2~(t)/e 

where ~(t) is Gaussian white noise. Let the exit time tex be the first time the par- 
ticle escapes an interval --A < X ( t ) < B ,  given that it starts at X(0 )=0  with 
Z(0)=z0.  Here we determine the exit time probability distribution F(t)-~ 
Prob{tCx>t} by directly solving the Fokker-Planck equation. In brief, after 
taking a Laplace transform, we use singular perturbation methods to reduce the 
Fokker-Planck equation to a boundary layer problem. This boundary layer 
problem turns out to be a half-range expansion problem, which we solve via 
complex variable techniques. This yields the Laplace transform of F(t) to within 
a transcendentally small O(e-A/~+e -B/~) error. We then obtain F(t) by 
inverting the transform order by order in e. In particular, by letting B ~ ~ we 
obtain the solution to Wang and Uhlenbeck's unsolved problem b; through 
O(e2a2/A 2) this solution is 

f ~A + ~aot + eaZo ), t F(t)= Jzr ~ - ~ 5 - K - ~ . ;  + . . -  for ~>>1 

and F =  1 otherwise. Here, c~ = ]~(1/2)1 = 1.4603..., where ff is the Riemann zeta 
function, and the constant x is 0.22749 .... 
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1. I N T R O D U C T I O N  

Many random physical processes are naturally modeled as stationary, 
Markovian, and, in view of the central limit theorem, Gaussian. "~4) By 
Doob's theorem, ~ the process is then an Ornstein-Uhlenbeck process. So 
consider the Ornstein-Uhlenbeck process Z(t) defined by 

dZ/dt = --ZIG 2 "+ 21/2~(t)/~ (1.1) 

where ~(t) is unit-strength Gaussian white noise. The transition probability 
density is 4 

where 

1 - ( z  - m z o ) 2 / 2 p  Pd{Z(t) = zlZ(0) = Zo} = ~  e (1.2a) 

m ( t ) = e  -'/~2, p( t )=  1 - e  -2t/~2 (1.2b) 

which yields the correlation time t~or = a 2. 
Consider the position X(t) of a particle whose velocity is an Ornstein- 

Uhlenbeck process, 

dX/dt = aZ/a (1.3a) 

dZ/dt = - Z / ~  2 + 21/2~(t)/~ (1.3b) 

The non-Markovian position process X(t) is the model of Brownian 
motion introduced by Ornstein and Uhlenbeck in t930. ~6) In the white- 
noise (high-friction) limit ~2~ 0, X(t) is a Gaussian Markov process with 
diffusion coefficient cr 2. In this paper we analyze the exit time (first passage 
time) problem for X(t). Specifically, let the exit time tex be the first time the 
particle escapes the interval - A  < X( t )<  B, given that it starts at X(0)= 0 
with Z(0)--z0. We shall determine the exit time probability distribution 

F(t)= Prob{tex> t} (1.4) 

in the asymptotic limit of "small" correlation times e2. 
To be more precise, the joint process (X, Z) is Markovian and its 

transition density satisfies the Fokker-Planck equation 

~2p, + aazp x = Pzz + zp~ + p (1.5) 

4 Throughout we use the notation Pd to refer to probability densities and Prob to refer to 
probabilities. 
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If the particle were free to wander over all of R 1, then we could solve (1.5) 
in the absence of any boundary conditions and obtain the free space 
solution 

p V ( t , x , z ) = P d { X ( t ) = x , Z ( t ) = z l X ( O ) = O , Z ( O ) = z o }  (1.6) 

This yields 

pV= l -~ . . . .  0)2/2p 1 e_[X_a,rc(z+zo)]2/2 a (1.7a) 
(27~p)a/2 e (2rcf2) m 

with m(t) and p(t) given in (1.2b), and 

c(t) = tanh(t/2e2), f2(t) = 2~r2t - 4~2a 2 tanh(t/2g 2) (1.7b) 

When t/e2>> l, this becomes 

v 1 _z2/2 1 1/2 e - I x  eer(z+zo)]2/4cr2(t--2e2) (1.8) 
p = ~ e [4~o.2(t_ 2g2) ] 

to within a transcendentally small error. Clearly the key time scale is the 
correlation time (mean free time) e2, and the key length scale is the 
persistence length (mean free length) ca. Crudely speaking, if Z (0 )=zo ,  
then the particle moves an average distance eaZo before its initial velocity is 
"forgotten." We assume that the length scales have been nondimen- 
sionalized so that A and B are both dimensionles and O(1), and we shall 
obtain F(t) using asymptotic methods based on ea ,~ 1. Thus, our results 
are valid whenever both Ea/A ~ 1 and ea/B,~ 1; i.e., whenever the per- 
sistence length ea is much less than the distance to either boundary. Alter- 
natively, we can interpret this restriction as e24~min{A2/a2, B2/a2}, 
indicating a correlation time much shorter than the time scale for diffusion 
to either boundary. 

1.1. A p p r o a c h  

Let p(t, x, z) be the probability density that the particle is at X(t) = x, 
Z(t) = z, and has not escaped by time t. That is, 

p ( t , x , z ) = P d { X ( t ) = x , Z ( t ) = z ,  a n d - A < X ( t ' ) < B f o r a l l t ' < t }  (1.9) 

given that X(0)= 0 and Z(0 )=  z o. Then 

F(t) = Prob{t,~ > t} = p(t, x, z) dz dx (1.10) 
--A --c~ 
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So we need only find p. Now p satisfies the Fokker-Planck equation with 
absorbing boundary conditions, 

e2p, + eaZpx = p= + zpz + p for 

p(t, - A ,  z) = 0 for 

p(t, B, z) = 0 for 

- A < x < B ,  allz (1.11a) 

z~>O (1.11b) 

z~<O (1.11c) 

The boundary conditions arise because the particle has never left the inter- 
val. Thus, there is no chance of finding it with a positive velocity at x = - A  
or with a negative velocity at x = B. See Fig. 1. No boundary conditions are 
required for the other half of the boundaries since they represent the 
particle leaving the interval. (These boundary conditions in phase space 
were first written down by Wang and Uhlenbeck. (7)) The initial condition 
for (1.11) is 

p(O, x, z) = &(x) 6 ( z -  Zo) (1.12) 

From the free space solution (1.7) we can expect p(t, x, z) to exhibit an 
initial transient on the e 2 time scale, during which the particle forgets its 
initial velocity and attains its steady-state Gaussian velocity distribution. 

0(~) 

k 

t-, 

o(~) 

2 p=? 

/1 

0 

x =  -A x =  B 

Fig. 1. The absorbing boundary conditions and boundary layers in velocity-position phase 
space. 
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Clearly, the behavior of p during this initial transient is irrelevant for 
calculating the exit time: even for times as large as O(e/a) the probability of 
reaching either x = - A  or x =  B is only e -~ See (1.8). Consequently, 
the boundaries are irrelevant for times t = O(E/rr) and smaller. So when 
t =  O(e/cr), we have p(t, x, z ) = p F ( t ,  x , z )  with the free space solution 
pV(t, x, z) given by (1.8), all to within an e -~ error. Since (1.8) is the 
solution of the Fokker-Planck equation with the initial condition 

1 
p(t, x, z) - (2rc)1/2 e z2/26(x- e a z -  eaZo) at t = 2e 2 (1.12') 

we can eliminate the initial transient by replacing the initial condition 
(1.12) with (1.12'). For all times longer than O(e/a) this replacement leads 
only to a transcendentally small error in p, and thus F(t). For all shorter 
times, F ( t ) =  1 to within a transcendentally small error. 

We will solve (1.11), (1.12') by taking the Laplace transform 

fo P(s, x, z) = e- ' tp( t ,  x, z) dt (1.13) 

Then (1.11) and (1.12') become 

~2 e-2e2"e-Z2/2~( x ecrzPx = P~z + zPz + ( 1 - e 2s) P + ~ - eaz - eaz o) 

for - A < x < B ,  allz (1.14a) 

P ( s , - A , z ) = O  for z~>0 (1.14b) 

P ( s , B , z ) = O  for z~<0 (1.14c) 

Physically, the velocity should be in its equilibrium Gaussian dis- 
tribution everywhere except near the boundaries x = - A  and x = B. Near 
the boundaries, the velocity distribution must deviate from Gaussian in 
order to accommodate the absorbing boundary conditions. Thus, P(s, x, z) 
should consist of an outer solution separating thin boundary layers of 
width O(ea) next to the boundaries. See Fig. 1. After deriving the eigen- 
functions for (1.14a) in Section 2, we find the outer solution to (1.14) in 
Section 3. Resolving the boundary layers then requires finding the solution 
to the Fokker-Planck equation which satisfies the absorbing boundary 
condition and properly matches the outer solution. This problem reduces 
to a half-range expansion problem for the Fokker-Planck operator, 
analogous to the Milne problem in classical transport theory. ~8-H) We use 
the half-range expansion technique in ref. 12 to solve this problem in 
Appendix A, and then match the boundary layers to the outer solution in 
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Section 4. This yields P(s, x, z), and thus the Laplace transform of F(t), to 
within a transcendentally small O ( e - / l / e ' ~  q - e B/,~) error. Finally, we obtain 
the exit time distribution by inverting the transform order by order in/3 in 
Section 5. Our results are summarized in the concluding Section 6, where 
we compare the colored-noise and white-noise exit time distributions. 

1.2. Key R e s u l t s  

Here we discuss the reduced (marginal) probability density 

p(t ,x ,  ,)=- f~o~ p ( t , x , z ) d z  (1.15) 

and the exit time distribution F(t). 
When t = 0(/3/0-) the particle has only a transcendentally small chance 

of reaching either boundary, so p(t, x, z) is given by (1.8). Hence, 

1 - -  ( x  - -  e ~ r z o ) 2 / 4 ~ r 2 ( t  - -  3e2/2) 
p(t, x, * ) =  [4zoo-z( t _ 3/32/2)] m e 

For all larger times we obtain 

p(t, x, , ) =  p~ x, , ) +  pA ( t , ~  
\ 

for 

(1.16) 

, *  + t, ,*  (1.17) 
/30" /30- 

where the t e r m s  pA and pB account for the boundary layers and are 
negligibly small unless x is within 0(/30-) of the boundaries. Away from the 
boundaries we find that p(t, x, , )  is given by 

p~ x, *) = u(t -- 3/3~/2, x) + 0(/33a 3) (1.18) 

where u is the solution of the "effective" diffusion problem 

ut=a2uxx for - A * < x < B *  (1.19a) 

u = 0  at x = - A *  (1.19b) 

u = 0  at x = B *  (1.19c) 

u=f(x - /3aZo)  at t = 0  (1.19d) 

and the "apparent" boundary positions are 

A * = A + eaa, B* = B + e0-a (1.20a) 
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with 

= IC(1 /2 )1  = 1 . 4 6 0 3 5 4 5 . . .  (1.20b) 

Here ( is the Riemann zeta function. As we shall see, the outward shift in 
the apparent boundary positions by the "Milne extrapolation length" 
eO~ (9-12) is caused directly by the boundary layers. See Fig. 2. Moreover, 
(1.16) shows that the 3~2/2 time delay and the effective starting position 
eaZo are due to the initial transient. 

There is only a transcendentally small chance of exiting before 
t = O(e/a). For all later times we find that 

F(t)= f ~ .  u ( t -  e2x, x) dx + ... (l.21a) 

where the constant x is 

K = 0.2274981... (1.21b) 

F(t) can now be obtained explicitly through O(e20 "2) by solving the 
diffusion problem (1.19). Explicit formulas are given in Section 5. 

The reduction in the time delay from 3~2/2 to eztc arises from two 
sources. For convenience, we are integrating over the extended interval 
[--A*, B*] in (1.21a) instead of the true interval [ - A ,  B]. Part of the 

p (t,x,*) 

Fig. 2. 

-A* -A 

"xx) ,- x 
E~176 B B* 

Qualitative sketch of the reduced density. Shown are the boundary layers and the 
apparent boundary positions. 
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reduction represents the time needed to cross the extra distance eae, and 
compensates for the widened interval. The remainder arises because the 
velocity distribution is biased toward the boundary in the boundary layers 
(the particle cannot be coming in from the boundary), which reduces the 
exit time slightly. 

We shall also find that the mean and variance of the exit time are 

ab  
E{tex} = ~-~a2 + e2K (1.22a) 

ab a2 I~ 3 
Var{ tex } = 1--~-~a4 ( + b 2 ) - - ~ a ~ ( 3 ) ( a + b )  + t~4K t (1.22b) 

to within a transcendentally small error, where 

a = A + ~ac~ + e a z  o, b = B + eao~ - ~aZo (1.22c) 

are the distances from the effective starting position eaZo to the apparent 
boundaries, and 

x ' =  -0.2311372... (1.22d) 

In particular, (1.22a) is the mean first passage time formula discovered in 
ref. 12. 

Finally, determining the exit time distribution for a semi-infinite region 
- A  < x < oo is Wang and Uhlenbeck's unsolved problem b. (7) Its solution 
can be obtained by setting B =  +oo and solving (1.19). This yields 

E - f A  + ~ac~ + ~ a Z o )  
r ( t ) =  r l~ 2~t---~---~-~ ~ + "" (1.23) 

through O(e2o-2). Note that this solution can also be deduced from ref. 11. 

2. F O R M U L A T I O N  

We can simplify the ensuing calculations by redefining 

/new = O.2told ~new ~ O./~old 

and by defining w ( t ,  x ,  z )  by 

1 
p( t ,  x, z)  = (2rc)1/2 e ~2/2w(t, x, z) 

(2.1a) 

(2.1b) 
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In terms of w and the new e, (1.11) and (1.12') now become 

~ 2 w , + e z w x = w = - z w z  for - A < x < B ,  allz (2.2a) 

w ( t , - A , z ) = O  for z>~0 (2.2b) 

w(t, B, z) = 0 for z ~< 0 (2.2c) 

with 
w(t, x, z) = a ( x -  ~ z -  ~Zo) 

Taking the Laplace transform 

now yields 

at t =  2e z (2.2d) 

W(s, x, z) = e-S'w(t, x, z) dt (2.3) 

g z W  x = Wzz - z W  z - e2sW + e2e-  2~2S6(x - gz - eZo) 

for - A < x < B ,  allz (2.4a) 

W ( s , - A , z ) = O  for z~>0 (2.4b) 

W(s, B, z) = 0 for z ~< 0 (2.4c) 

It is clear from (2.4a) that the operator L, 

Lo - Vzz - ZVz - F.2SV 

plays a central role. In the inner product 

(u, v)  - (2n) m co e-Z2/2u(z) v(z) dz 

L is self-adjoint: 

(2.5) 

(2.6) 

(u, L v )  = ( L u ,  v )  (2.7) 

Moreover, the Laplace transform of the reduced density is now just 

P(s, x, , ) =  ( i ,  W(s, x, z ) )  (2.8) 

so the Laplace transform F(s) of the exit time distribution F(t)  is 

F(s) = P(s, x, *) d x =  (1,  W(s, x, z ) )  dx  (2.9) 
- - A  - - A  

We shall obtain the exit time distribution by solving (2.4) and then 
evaluating and inverting (2.9). 
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2.1. F i g o n f u n e t i o n s  

To solve (2.4), we must consider the generalized eigenvalue problem 

Lv=-Vzz-ZVz-gZsv=2zv for - o o  < z <  ~ (2.10a) 

(v, v) < ~ (2.10b) 

We shall solve (2.4) by expanding in the eigenfunctions defined by (2.10). 
The solution of (2.10a) with the appropriate asymptotics as z ~ + ~  

is (13) 

v(2, z ) = U ( q , z + 2 2 ) e  z2/4 with q = - 1 / 2 - 2 2 + e 2 s  (2.11) 

where U is the parabolic cylinder function of index q. However, 
v(2, z) ~ ef/2 as z ~ -o0  unless 22 = n + gZs for a nonnegative integer n. S o  
let 

A n = (n + e2s) 112 (2.12a) 

Then the eigenvalues and corresponding eigenfunctions are 

2 =  +2, ,  v+(z)=_U(z+22,)eZ2/4=He,(z+22,)e -x"~-x2. (2.12b) 

2 =  - 2 , ,  v ~ ( z ) - U ( z - 2 2 , ) e ~ 2 / 4 = H e , ( z - 2 2 n ) e  +x"z x~" (2.12c) 

for n--0,  1, 2,..., where He, are the Hermite polynomials. Here we are 
suppressing the index q of the parabolic cylinder functions; from now on it 
is to be understood as - 1/2 - 22 + e2s. 

To determine orthogonality, let vl and v2 be any two eigenfunctions of 
(2.10) with eigenvalues 21 and 2z. Since L is self-adjoint, 

( 2 1 -  22)(ZVl, / ' ) 2 )  = (Lvl ,  v2> -- (vl ,  Lv2> = 0  (2.13) 

So if 2, ~ 22, then vl and v2 satisfy the orthogonality relation 

(zvl ,  v2) = 0 (2.14) 

Thus, we obtain (13) 

+ ( zv ; ,  v~ ) = 22,n! 6,,,, (zv +, v m ) = -22 ,n!  8nm , 

Consequently, the expansion of a given function f (z )  is (14) 

n ~ O  n ~ O  

( zv ; ,  v + ) = 0 

(2.15) 

(2.16a) 
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f ~  = (zv~,  f ) / 2 2 , n ! ,  f +  = (zv +, f ) / 2 2 , n !  (2.16b) 

For  future reference we note the symmetry property 

v ; ( z )  = ( -  1)" v ,+(-z )  (2.17) 

We will also need 

(1, v ~ ) = [ - 2 , ] " e  -~2./z, (1, v + ) = [ 2 , ] " e  -;)./2 (2.18) 

as can be derived from Rodrigues' formula. "s) 

3. T H E  O U T E R  S O L U T I O N  

We now solve (2.4) to find the solution W ~ which is valid away from 
the boundaries. A particular solution of (2.4) is 

WP(s, x, z) = 2 ~ s  e -2~2Se-S~/21 . . . . . . .  01 (3.1) 

as can be verified by substitution. [This solution is just the Laplace trans- 
form of (1.8) in the new variables (2.1).] Thus, the general outer solution is 

W ~ W P +  W H (3.2a) 

where W ~ satisfies the homogeneous equation 

ezWx = W~z - zWz - eZsW - L W  (3.2b) 

Since 2 o = e . ~ ,  expanding W n in the eigenfunctions of L yields 

W ~ = C(s) Vo(Z) e-S'2x+ b(s )  v~(z) e s'2x 

+ ~ C,(s) v ; ( z ) e~"x /~+  ~', D,(s) v+(z)e  +~"~/~ (3.3) 
n = l  n = l  

Clearly the coefficients C. and D.  must be zero for all n = 1, 2 ..... For  if 
W n grew exponentially on the short x/e scale as either x/e ~ ~ or as 
x/e--. -o% then the outer solution would become transcendentally large 
and could never match the boundary layer solutions. Rewriting 

C(s) = -2sl/2e ~2"- ~o~taC(s), O(s) = -2sl/2e~2S+~~ (3.4) 
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for simplicity, the general solution to the outer problem now becomes 

WOUt  _ 1 e_2~2~{e st/2 Ix ~-~01 _ Ce-S~/z(x-,,z-.=o) 
2,5 
- D e  + ~ / z ~ x  _ ~.z - ~.zo) } (3.5) 

where the coefficients C(s) and D(s) must be found by matching to the 
boundary layers. 

4. BOUNDARY LAYERS 

Since W ~ does not satisfy the boundary conditions (2.4b) and (2.4c), 
there must be boundary layers at x = - A  and x = B. To resolve the layer 
at x = - A ,  define 

~= (A + x)/~ (4.1) 

In terms of the boundary layer variable :~, (2.4) yields 

z W , =  W z z - Z W z - e 2 s W  for ~ > 0 ,  allz (4.2a) 

W = 0  at ~ = 0 ,  for z>~0 (4.2b) 

and matching the outer solution (3.5) requires 

1 e-2~2s{ (1 -- D) e -s'/2~A +~~ 

_ Ce.~t/2(a + .~zo) e _ ~.s,/2~_ z)} (4.2c) 

for Y >> 1. 
To solve the boundary layer problem (4.2), suppose that we could 

solve the problem 

z V x = V z z - z V ~ - e . 2 s V  for i f>0 ,  allz (4.3a) 

V(s, O, z) = e-'S~aZ for z >~ 0 (4.3b) 

using only the eigenfunctions v~-(z): 

V(s ,~ , z )=f lo (s )e  ~,/2~_z)+ ~ fl,,(s) vy(z)e_.~,~ (4.3c) 
,=1 

[In the first term of (4.3c), note that e '~s'~z is essentially just Vo(Z ). See 
(2.12).] In terms of V, the solution of (4.2) must be 

W =  lr-e-2~2~(1--D)e-S~/~A+'z~ V(s ,~ ,z )}  (4.4) 
2 
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and we must have 

C = (1 - D )  rio(S) e -2~j/z{A +~o) (4.5) 

for then (4.4) satisfies (4.2a) and (4.2b) exactly, and it reduces to the outer 
solution (4.2c) when 2 >> 1. Moreover, we can write (4.4) in the original 
space variable x as 

A + x  ) 
W =  W~ x, z) + W* s, - - ,  z (4.6a) 

where the outer solution is given by (3.5) and the contribution from the 
boundary layer is 

1 e 2~2s(1-D)e -~'~2(A+~z~ 
WA(s, 2, z)=7--~s~ 

x {rio(S) e ~sl/2(~_z)_ V(s, ~, z)} (4.6b) 

Note that W A is transcendentally small unless 2 =  (A +x)/e is O(1). Thus, 
if we can solve (4.3) for V, then we can resolve the boundary layer at 
x = - A  and obtain one relation, (4.5), for the unknown coefficients C 
and D. 

The boundary layer at x - - B  can be resolved similarly. This yields 

W= w~ X, Z) + W A (s, ,z  + W  B s , - - , z  (4.7a) 

where the contribution from the boundary layer at x = B is 

WB(s, s z) = 1 / -e -2~2s(1  - C) e -sj/2(s-~z~ 
2,/s 

x {rio(S) e -~sl/2(~+z)- V(s, 2, - z ) }  (4.7b) 

and V is the same function as before. Resolving this boundary layer also 
yields 

D = (1 - C) rio(S) e -2s'/2~B- ~z~ (4.8) 

So if we can solve problem (4.3), then (4.5) and (4.8) will determine C(s) 
and D(s), and (4.7a) will yield the uniformly valid solution to (2.4). 

822/54/5-6-15 
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4.1. The Uni formly  Val id Solut ion 

In Appendix A we use the half-range expansion technique in ref. 12 to 
obtain the unique solution to (4.3). We discover that 

rio(S) = M:(e x//-~), ri.(s) = ( - 1 )" ~ ~ ed'M(e x/~) N(2.,  s2s)/2.n! 

( 4 . % )  

where )~. = (n + e2s)~/2 as before. Analogous to the F function, the function 
N is defined by an infinite product 

N(2, r 2) ~ f i  [ ( 1  + r2/k) 1/2 -+- 2/k ~/2 ] e -22[km-  {k- ~}~/2]{( k + 1)/k}(22-rZ)/2 

k = 1 (4.9b) 
and 

M(e x/-s) = N(e x/-s, eZs) (4.9c) 

The functions N and M are briefly examined in Appendix B. In 
particular, we find that 

M(e ~ ) =  exp {e x//7 ; :  ~,�89 dq} (4.10a, 

and 

N(2,,  e2s) = N(x/#s 0) exp ~.~ J0 ~(~' 1 + e2sq)/(n + e2sq)~/2 dq (4.10b) 

where ~ is the generalized Riemann zeta function. (15) Expanding now yields 

M(e x /s )  = e ~s~/2{ 1 - ~e3s3/nC(~) + --. } (4.11a) 

N(2,,  g2s)= N(x//-n, 0) e d~=/2"~/2{1 . . . .  } (4.11b) 

where 

= IC(�89 = 1.4603545. . .  

By solving (4.5) and (4.8) for C and D, 
uniformly valid solution to (2.4). Let 

Q(s) - M~(e x/-s) e -2#2~A +=o) 

= e -  z#2(A + ~ + ~z~ 1 -- ~1~3s3/2~ (3 ~ " ~ t ~ l  " " �9 } 

R(s) =- M2(e w/-s) e - 2#2(e =o) 

= e -  2#:(B + . . . .  0){ 1 --3ie3s3/2~( 3)~ -I- "" "} 

(4.11c) 

we can now write the 

(4.12a) 

(4.12b) 
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Then the uniformly valid solution is 

W= W~ x, z) + W A (s, - -  

where the outer solution is 

W ~  - ~ e -  2eZs ~'e ,,/2 Ix- ,~- ~0t 
-2,f; 

1 -  R Qe_~t/2( . . . . . .  o~ 
l - Q R  
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,z  + W e s, z (4.13a) 
8 

1 - Q Re,~/~( . . . . . .  0)} (4.13b) 
1 - Q R  

and the modifications due to the boundary layers are 

W, = _ee_~2,~l-R Q1/2 ~ (_l)nT,V2(z)e-~,(A+x)/, (4.13c) 
1 - Q R  .=1 

1 - Q  R 1/2 ~ ( 1)"Tnv, ( - z )  e -~~ (4.13d) W B = - ~ e - e 2 s  
1 - Q R  ,,=l 

Here, 

7, = N(2n, eZs)/22,n! (4.13e) 

Clearly, W satisfies Eq. (2.4a) exactly, since each term does. At the left 
boundary, however, W A cancels out only the outer solution. Thus, 

( A+B,z)=O(e-(A+B'/~)  for z>~O (4.14a) W(s, - A ,  z)= W s s, e 

Similarly, 

( A + B  ) +~)/~) for z~<0 (4.14b) W ( s , B , z ) = W  A s, ~ ,z  =O(e -(A 

So although (4.13) is not exact, it is valid to within a transcendentally 
small error. 

5. THE REDUCED DENSITY.  EXIT T I M E S  

Our remaining task is to integrate (4.13) to obtain the reduced density 
and the exit time distribution. Recall from (2.8) that the Laplace transform 
of the reduced density is 

P(s, x, *)= (1, W(s, x, z))  (5.1) 
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Clearly, the reduced density has, the same boundary layer structure as W, 

, ,  +pB  s , - - , ,  (5.2) P ( s , x , , ) = p ~  A s ,  e e 

Obtaining P~ x, , )  requires evaluating (1, q~(s, x, z)), where 

1 

�9 (s, x, z) = 2 ~ s  e-R~2Se-~"21 . . . . . . .  01 (5.3a) 

See (4.13b). This can readily be done by taking the inverse Laplace trans- 
form of (5.3a), evaluating the inner product in the time domain, and then 
taking its Laplace transform. This shows that we may set 

1 e - 3e2S/2e - sl/2 ix - ez01 (1, q~(s, x, z))  = _------m (5.3b) 

Thus, 

pout 1 3e 2 "2 ~ 1 - R Qe-~/2[ . . . .  o) = ~ e -  s/ e-S~/21x-'z~ 
2 x / s  [ 1 - Q R  

1-Q } 
1 - QR ResVZc . . . .  o) (5.4a) 

Moreover, using (2.18) shows that the boundary layer terms are 

p A =  _~e-3e2s/2 1 - R  Q1/2 ~ ~,2~e "/2e-~"~A+x~/~ (5.4b) 
1 - Q R  . = l  

p B =  _~e-3~2s/2 1 - Q  Rt/2 ~ y,)~e_,/Ze_;..~B_x)/~ (5.4c) 
1 - Q R  . = 1  

Now, the position process X(t)  is often modeled as a Markovian 
diffusion process, which amounts to approximating the reduced density 
p(t, x, , )  by an "effective" diffusion equation. ~1w19) Such an approach can- 
not be expected to handle the boundary layers. So let us find the diffusion 
problem which correctly yields the outer solution (5.4a), and thus gives the 
correct reduced density away from the boundaries. Observe that 
P~ x, *) satisfies 

Pxx - sP = - 6 ( x  - eZo) e - 3~2s/2 (5.5) 

Additionally, P~ x, ,)  is very nearly zero at the "extrapolated" boun- 
dary positions x = --A* and x = B*, where 

A*~-A+e~, B * = - B + e ~  (5.6) 
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Specifically, (4.12) shows that pout satisfies 

p = 1 3 3 (5.7a) ~5 ff(~) Pxx.~-- "'" at x = - A *  

p =  1 3  3 - g5 ~(~) Pxxx + "'" at x = B* (5.7b) 

Therefore, away from the boundaries the reduced density is 

p~ X, *) = u(t -- 352, x )  (5.8) 

where u is the solution to the "effective" diffusion problem 

u t = u x x  for - - A *  < x  < B *  (5.9a) 

u = ~53~(3) Ux~- -  . . .  at x = --A* (5.9b) 

1 3 3 u = - ~5 ((~) uxxz + "'" at x = B* (5.%) 

with the initial condition 

u(O, x )  = 6(x  -- eZo) (5.9d) 

Clearly the main effect of the boundary layers is to shift the "apparent" 
boundary positions outward by the "Milne extrapolation length" 5e. 

Recall that we rescaled both the time variable t and e to simplify the 
calculations. See (2.1a). In the original t and 5, (5.8) and (5.9) agree with 
the results quoted in the introduction. For  example, the diffusion coefficient 
in (5.9a) is o -2 and the Milne extrapolation length is 5a~ in the original 
variables. 

5.1. Exit Times 

In this section we revert to the original variables t and 5. The exit time 
distribution derived here corresponds directly to the problem as originally 
posed in Section l. 

From Section 1.1 recall that after the initial transient dies away, say, 
when t =  O(5/a) or larger, the exit time distribution can be obtained to 
within a transcendentally small error by inverting 

9 F(s) = P(s, x, , )  ,Ix (5.10) 
- - A  

Integrating (5.2) and (5.4) then yields 

if(s) = 1  e_3d/2 1 e_3,2s/2 al/Z + R,/2 
s s 1 + (QR)  I/2 

x {�89 (5.1 la) 



1338 Hagan et  al. 

in the original variables, where Q and R are now 

Q = M2(e, x//-;) e-Zsl/2(A +~azo)/a = e-2asl/2/a{ 1 --31/33S3/2~( 3)2 "3t- " ' '}  

R = m2(g x/S) e 2sl/2(B etrzo)/tr = ~.~ | --~o1~3~ ~21--"1- . . . }  

Here 

(5.l ib) 

(5.11c) 

A(e2s)- ~ N(2., e2s) 2; 2e "/2/2n! (5.11d) 

accounts for the modification in the exit time due to the boundary layers, 
and 

a - A + 8aa + eaZo, b =- B + ea~ - eaz o (5.12) 

are the distances from the effective starting point eaz o to the apparent 
boundaries. 

Moreover, there is only a transcendentally small chance of exiting, and 
thus F ( t ) -  1 to within a transcendentally small error, when t = O(e/a) or 
smaller. Combining this with (5.11), the exit time distribution F(t)  can be 
found to within a transcendentally small error for all times by inverting 

if(s) = _1 _ _1 e - 3~2s/'2 01/2 + R1/2 
s s 1+  (QR)  m 

x , , f ; ) -  + , /7)3 + (5.13) 

We have been unable to invert (5.13) in its entirety. We can expand 
(5.13) to any order in e, and then invert to obtain F(t)  to that accuracy. 
Here we choose to expand through O(e2). Then 

if(s) = 1 1 cosh sl/2(b - a)/2a 
s s coshsl /2(b+a)/2cr  {1-ees~c+ ...} (5.14a) 

with 

3 1 ~2_ A(0) = 0.2274981... (5.14b) 

Inverting (5.14) now gives 

( a Z ( t -  e2~c)~-(-d-~-~ J +  -j~> l F ( t ) =  H \ . . .  for (5.15a) 
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where 

H(O) = 2k+------i-sin (2k+ 1 ) 5  e 

Note that when 0 is larger than, say, 1/10, the first term in (5.15b) suffices. 
See below, Fig. 4. 

Instead of expanding (5.13) in powers of e, we can expand in powers 
of s. Since 

F(s )=  e - " P r o b { t e x > t } d t =  ( - 1 ) k E { t e ~ + l } s k / ( k + l ) !  (5,16) 
k=O 

this yields the moments of t~x. For example, the first two moments are 

e{te~} = ab ~ + e2x (5.17a) 

and 

Var{t~x} = ab ~3 1--~aa(a2+b2)--~a~(~)(a+b)+~4~c' (5.17b) 

to within a transcendentally small error, where the constant x' is 

K,= 1~(3) _ 1~4 _ ~2A(0) + 2A'(0) - A2(0) = -0.2311372... (5.17c) 

5.2. H a l f - S p a c e  Exit  T imes  

Finally, finding the exit time distribution for a semi-infinite interval 
- A  < x <  +oo is Wang and Uhlenbeck's problem b. (7) Setting B =  +oe in 
(5.13) yields 

F(s) = 1 _ 1  e_3~2,/2Ql/e{1[M(~ x//-~)_l § M(~ x//~)] + e2sA(e2s)} (5.18) 
S S 

Expanding (5.18) and inverting the transform, we now find that the 
solution to problem b is 

d3 ~2 1 3~3r13~ G _  1.4_4. , d4G F ( t ) = G + - ~ e o ~ t ~ j - - ~ a 3 - r ~ o ~ - ~ a 4 + . . .  for >>1 (5.19a) 

where 

G - Erf(a/2a(t  - e 2K ) 1/z ) ( 5.19b ) 
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6. C O N C L U S I O N S  

The exit time distribution for a particle driven by weakly-colored 
Gaussian noise is given in Section 5. It is instructive to compare this dis- 
tribution with the results for the "white-noise" case (t~o~ = e 2= 0) in order 
to see the consequences of a nonzero correlation time. For simplicity we 
consider only the exit time from the interval [ - L ,  L],  assuming that the 
particle starts at the center, 2"(0)= 0, with velocity Z ( 0 ) =  z o =0.  

For a particle driven by white noise, 

dX/dt = 21/2a~(t) (6.1) 

we need to solve the Fokker-Planck equation with absorbing boundary 
conditions: 

Pt = a2Pxx for Ixl < L (6.2a) 

p = 0  at x = + _ L  (6.2b) 

p(0, x) = 6(x) at t = 0 (6.2c) 

Then the exit time distribution and mean exit time are given by 

Fw(t) = Prob{ rex > t} = p(t, x) dx (white noise) (6.3a) 
--L 

Twhit e ~- E { t e x  } = p(t, x) dx dt (white noise) (6.3b) 
--L 

Solving (6.2) yields the mean exit time Twhit ~ = L2/2a 2. This is also the 
white-noise diffusion time scale, so it is natural to nondimensionalize the 
time variable t in terms of Zwhite, 

"[ = l / T w h i t  e = 2a2t/L 2 (6.4) 

In terms of z the exit time distribution is then 

Fw(r)=-4 ~ (_l)n(2n+l)_le_~2.+l)2.2~/8 (white noise) (6.5a) 
n~O 

Consequently, the exit time probability density is 

d 7[ 
fw(T) - -- ~--~ Fw(z) = ~  ,~o= ( -  1)" (2n + 1) e-~2, + 1)2 ~2~/8 (white noise) 

(6.5b) 
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For a particle driven by colored noise, the mean exit time is 

T -  = E{tex } = (L + eo'~)2/2o "2 + ~2tr (colored noise) (6.6) 

to within a transcendentally small error, where ~ =  1~(1/2)1 = 1.4603... and 
tc=0.22749 .... See (5.17). In terms of �9 and the dimensionless correlation 
time 

r I = t c o J T w h i t e  = 2 f f 2 8 2 / L  2 (6.7) 

this is 

T/Twhi t e  = E { z ~ x }  = [ 1 + (q~2/2)1/212 -4- r]/~ (colored noise) 

Moreover, through 0(8262/L 2) the exit time distribution F(v) is 

4 
F ( v ) - -  ~ ( - 1 ) ~ ( 2 n + l ) - l e  (2~+a/2~2~-~)/sa 

- -7~n= 0 

where 

3 = (1 + ~a~/L) 2= [1 + (qc~2/2)1/232 

(6.8a) 

(colored noise) 

(6.8b) 

(6.8c) 

Consequently, the exit time probability density is 

d ~ ~ ( - 1 )  n (2n+ 1)e -(2"+1)2~2(T-~'~/8~ f ( z )  - - -~z r ( r )  = ~-~ 
n=O 

(colored noise) (6.8d) 

Of course, (6.8) holds only for times t /e  2 =  ~/~1 >> 1; at all earlier times the 
probability f of exiting is zero to within a transcendentally small error. 

The finite-correlation-time results (6.8) are simply the white-noise 
results (6.5) with the dimensionless time z delayed by t/~c and rescaled by 3. 
Since A depends on the square root of q, the exit time depends very 
sensitively on the correlation time. Even small values of q can cause 
surprisingly large increases in the exit time as compared to the white noise 
limit. This is exhibited in Fig. 3, where the mean exit time T is graphed 
against q. Note that T is already 50% larger than Twhitr when the 
correlation time is only 5 % of Twhit~ (~/= 0.05). 

Figures 4a~4c show the effect of increasing the correlation time on the 
exit time probability density. There we plot the probability density f (z)  for 
the cases (a) q = 0 (white noise), (b) tt = 0.02, and (c) q = 0.10. Even for 
"nearly" white noise, where toot is only 2% of Twhitr (case b), there is a 
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striking change in the distribution from its white-noise limit. As the 
correlation time increases further, the main effect is to broaden the peak in 
the density by the factor A. Finally, note that when vIA is larger than 3/4, 
f(v) can be accurately approximated by using only the first term in (6.8d). 
The exponential approximation obtained by using just this first term is 
shown by the dashed lines in Figs. 4aMc. 

A P P E N D I X  A. THE H A L F - R A N G E  E X P A N S I O N  

Here we solve the key boundary layer problem 

z V ~ = V . z - z V z - e 2 s V  for )?>0, atlz (A.la) 

V(s, 0, z ) = e  -~'~/2z for z~>0 (A.lb) 

with V of the form 

V(s, ~, z) = flo e-~s~/~(~ z) + ~ fl, v2(z  ) e-~,~ 
n = l  

Note that at ff = 0, 
~e ~st/2z 

V(s, O, z )= fioe+~'/~ + ~ fl, v~-(z) = [unknown 
n = l  

for allz (A.lc) 

for z~>0 
(A.2) 

for z~<0 

Thus, (A.1) is a half-range expansion problem: We must match a 
prescribed function over half the domain using only half the eigenfunctions. 

We shall solve (A.1) using the Laplace transform technique in ref. 12. 
Consider the Laplace transform with respect to ~, 

H(s, )o, z) - e ~V(s,  .~, z) d~ (A.3) 

Transforming (A.lc) yields 

H =  flo /_e+~S~/2z+ ~ ft, v~(z) forallz (A.4) 
; ~ + ~ , y s  . = ~ ~- - -+-~  

where the coefficients fl are unknown. Alternatively, when z ~> 0 we can 
transform (A.la) and (A.lb) and find 

Hzz -- zH  z -- (2z + ~2s)H = - z e  ,sV2z for all z ~> 0 (A.5) 

Solving (A.5) yields 

- -  ~ S I / 2 z  e 
m = - -  

2 - e x / ~  
F(2, s) U(q, z + 22) e z~/4 for z ~> 0 (A.6a) 
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where the function F(2, s) is unknown and U is the parabolic cylinder 
function (13~ of index 

q = -22 + e2s - 1/2 (A.6b) 

Note that U is an entire function of 2. 
We shall solve (A.1) by inspection: Since (A.6a) and (A.4) represent 

the same function, (A.6) can have no singularities in 2 not present in (A.4). 
Thus, comparing (A.6a) with (A.4) will identify the singularities of F. 
Factoring out these singularities will then leave us with an entire function 
of 2. Comparing the asymptotics of (A.4) and (A.6a) as 121 ~ o0 will then 
identify this entire function. 

Since (A.4) does not have a pole at 2 = e x/-s, clearly F must have a 
simple pole at 2 =e  xf~ to cancel the pole in the first term of (A.6a). 
Additionally, (A.4) shows that F could have simple poles at 2 = - 2 n =  
- ( n  + e2s)m for n =0 ,  1, 2,.... To factor out these poles, define 

N(2, e2s) ~ f i  [(1 + e2s/k)m + 2/k 1/2] 
k = l  

x e - 2)[k112-- ( k  - -  1) 1i2] ( 1 + 1/k)(;2 _ ~2,)/2 (A.7) 

The particular convergence factors chosen in (A.7) are convenient because 
they form a telescoping (simplifying) product. Clearly N is entire in 2--it  
converges uniformly in every bounded region of the complex 2 plane--and 
the only zeros of N are simple zeros at 2 = -2n for n = 1, 2 ..... We now 
write F(2, s) = E(2, S ) / ( 2  2 - -  ~2S) N(2, e2s), so that (A.6a) becomes 

e ,~/2~ E(2, s) 
H=2_------------ ~x/s ( 2 2 _ e 2 s ) N ( 2 ,  e2s) U ( q , z + 2 2 ) e  z2/4 for z~>0 (A.8) 

Every singularity in (A.4) is now explicitly present in (A.8). Therefore 
E must be entire in 2. Moreover, at 2 = e x//~ we have 

U(q, z + 22) e z2/4 -= e es~/2Ze ~2s 

So to cancel the pole at 2 = e x/~ we must have 

where 

E(2, s) = 2~ x//-s M(e  x/ 's)  e ds at 2 = e x/~ (A.9a) 

M(e ,,fs) = N(a ~ ,  e2s) (A.9b) 
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We now show that E is constant in 2. At each z, (A.4) shows that 

H~-~ floe+'Sl&+ fl, v2(z ) for 121>1, larg21#Tt (A.10) 
n = l  

On the other hand, asymptotic formulas for N(2, e 2) and U(q, z + 22) are 
worked out in Appendices B and C; these formulas show that at each z 

U(q, z + 22)/(22 - e2s) N(2, eZs) ~ (2E) 3/4 ~-7/6 Ai(2 U3z) 

for 12[>1, [a rg21#~ (A.I1) 

So for (A.8) to be consistent with (A.4) (in particular, at z = 0 ) ,  we must 
have 

]E(2, s)/,~1/61 <~ const as 121 ~ ~ (A.12) 

Since E is entire and grows sublinearly as 2 ~ ~ ,  it must be constant in 2. 
Thus, 

e - ~;sl/2z 

H = - -  
2e ~ 7  e~2*M(g x f  s ) 
-~i----~-~s)-~2,--~s) U(q, z + 22) e z:/4 for z~>0 

with 

this yields 

The function H(s, 2, z) is now completely specified, at least when z ~> 0. 
We now invert the transform by integrating along the Bromwich contour, 

V ( s , ~ , z ) = L [  e~~H(s, 2, z) d2 for z~>0 (A.14) 
ZT~l  J B 

The asymptotic formula (A.11) permits us to move the contour to 
Re{X} = - o r ,  converting the integral to the sum of its residues. Since 

U(q,z+22)ez2/4=vy(z) at 2 = - 2 ,  (A.15) 

V(s, s z) = floe-~t/2(~-~) + ~ f l .v~(z)  e -~'~ (A.16) 

= 

(A.17) 

(A.13) 



Exit Times for Weakly Colored Noise 1347 

Moreover, from Appendix B 

M ( - e  x/~)= l/M(e x/~), 
(A.18) 

N~( - 2 , ,  ~Zs) = - (  - 1)" 22,(n - 1)!/N(2,, e2s) 

Thus, the solution to the key boundary layer problem (A.1) is 

V(s, 2, z) = floe ~,~/2~_z~ + ~ fl,v, (z) e -~"~ (A.19a) 
n = l  

with 

flo = M2(e x/~), 

fin = (-- 1)" e ~ e~2~M(e ~/~) N(2.,  e2s)/2.n! 
(A.19b) 

A.]. Verification. Uniqueness  

One can now easily verify that (A.19) is the solution of (A.1) for all z, 

even though (A.13) is valid only for z/> 0. In brief, let the branch cut of x f s  
be along the negative real axis. Smoothness properties of (A.19) can be 
determined by using the asymptotic formulas in Appendices B and C to 
establish the uniform convergence of (A.19) and its derivatives over boun- 
ded regions. This shows that V is continuous in 2 and z, and analytic in s, 
for all s off the negative real axis and all 2 >/0. Moreover, when 2 is strictly 
positive, then V is infinitely differentiable in 2 and z and the series (A.19) 
can be differentiated term by term. Thus, (A.19) satisfies Eq. (A.la) since 
each term does. Additionally, since the transform of (A.19) is (A.13) for all 
z >~ 0, and since 

2H(s, 2, z) ~ e ~,,2z as 

then (A.19) also satisfies (A.lb). 
(A.19) is a solution to (A.1). 

121 --' oo with ]arg 21 < re/2 (A.20) 

Finally, (A.lc) is clearly satisfied, so 

It is easy to see why (A.19) must be the unique solution of (A.1) when 
Re{s} >0.  To show uniqueness, we must show that h - 0  is the only 
solution of 

zh~ = hzz-  zh z -  e2sh for 2 > 0, all z (A.21a) 

h(0, z) = 0 for z/> 0 (A.21b) 
with 

h(2, z)=~oe-~St'2(~-z) + ~ 7,v2(z) e ~'"~ 
n = l  

for all z (A.21c) 
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But from (A.21a) 

(zhh*, 1)~= -2 (hzh* ,  1 ) - 2 e 2 R e { s } ( h h  *, 1) (A.22) 

where h* is the complex conjugate of h. Integrating over all s now yields 

(zh(O,z) h*(O,z), 1 ) > 0  when Re{s}>0  (A.23) 

unless h(~, z) is identically zero. But (A.21b) implies that the left side of 
(A.23) is negative or zero. Hence h(~, z) must be identically zero, and thus 
V(s, ~, z) must be unique, for all s with Re{s} >0. The uniqueness of the 
solution V(s, ~, z) of (A.1) (when Re{s} > 0) can also be proven rigorously 
by applying the results in ref. 14. 

We do not know if the solution V(s, ~, z) of (A.1) is unique when 
Re{s} < 0. However, V is analytic and unique for Re{s} > 0, which guaran- 
tees that the inverse Laplace transform v(t, ~, z) is unique. Only v(t, ~, z) 
has direct physical meaning, so whether the solution V(s, Y~, z) of (A.1) is 
unique when Re{s} < 0 is moot. 

APPENDIX  B. PROPERTIES OF N A N D  M 

Here we very briefly examine 

N(2, r 2) = f i  [-(1 + r2/k)l/2 + )~/k 1/2] e -2)~ (k 1)t/2](1 + 1/k)~;~ 2 r2)/2 

k = l  

and 
M(r)=-N(r, r2) = f i  [(1 +r2/k)m +r/k  1/2] e -2r[kl /2-(k 1)1/'2] 

k = l  

where we have set r = e x/~ for clarity. 

(B.la) 

(B.lb) 

B.1. Ref lect ion 

The infinite-product representation of the gamma function (15) yields 
the reflection formula 

N(2, r 2)  N( - 2 ,  r 2)  = l/F(1 + r 2 - -  2 2)  = (l/n) sin g ( ) 2  _ r 2)  F(22 _ r 2)  

(B.2) 
Setting 2, = (n + r2) m, we now obtain 

Na(-- 2,, r 2) = - - 2 ( -  1)" 2 , ( n -  1)!/N(2,, r 2) (B.3) 

as used in Appendix A. Additionally, clearly, M(r) M( - r) =- 1. 
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B.2. Integral  Representat ions 

Differentiating (B.lb) with respect to r yields 

M'(r)/M(r)= lim (k+r2)-ln-2 - -~ ( �89  2) (B.4) 
m ~ o o  k 1 

where ~ is the generalized Riemann zeta function. (is) So M can be represen- 
ted as 

M(r)=exp{fo~(�89189 l+r2q2) dq} (13.5a) 

Similarly, 

N(2, ,  r2)= N(x/-n, 0)exp {lr2 ~(�89 ~/2 dq} (B.5b) 

where 2, = (n + r2) 1/2 as before. In particular, 

~t• 1 + q) = ~(�89 _ ~'<r + 3q2~(~) . . . .  (B.6) 

SO 

and 

M(r)=exp{~(�89 3, 3 r s _  (~) r + 3~(~) ---} (B.7a) 

N(2, ,  r 2) = N(x/-n, 0)exp{~(�89 r2/2 ~ + ... } 

for tr] ~ 1, as used in Sections 4 and 5. 

(B.7b) 

B.3. Large-A Asymptot ics  

Consider the partial product of (B.la), 

log N. = - 2 2  ~-n + 1(22 - r 2) log(n + 1) + n log 2 - �89 log n! + ~ f(k) 
k = l  

(B.8a) 
with 

f(k ) = log[1 + (k + r2)1/2/2 ] (B.8b) 

To analyze (13.8) for large 2, we use the intermediate limit 

m - -  i 

f ( k ) =  2 f(k)+ ~ f(k) (B.9) 
k - - 1  k - - 1  k = m  

822/54/5-6-16 
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where m ~> 1 and xfl-m/2 ~ 1. Then for n large enough,  

f ( k )  = ~ f ( k )  dk + �89 + O(x//-m/2) + O( l/n) (B.10) 
k = m  ~ rn 

provided that  larg2l <~ .  Substituting (B.9) and (B.10) into (B.8) and 
letting n ~ ~ now yields 

log N(2, r2) = - �88 log 2~ + ( 2 2 -  r 2 -  �89 log 2 -  �89 + Din(2) (B.11a) 

where 

m - - 1  

D~(2)  = ~ f ( k )  + (2 2 - r 2 -  m ) f ( m )  - 2(m + r2) 1/2 
k = l  

+ �89 + r 2) + 0(ml/2/2) 

Since m ~> 1 and ml/2/2 ~ 1, we have Din(2 ) ~ 1. So 

N(2, r 2) ~ (2r 0 -u4  2-1/2 exp{ (22 - r 2) log 2 - �89 } 

for 121 "> 1 with ]arg 41 < n. 

(B.11b) 

(B.12) 

A P P E N D I X  C. A S Y M P T O T I C S  OF U 

To analyze U for large 2, recall that  (13) 

g(q, z + 22) = F(1 + 22 - r 2) e -(z+2;)'/4 1 1 ezs+2)'s-s2/2sr2 22 1 d s  
2zci H 

(C.1) 

where H is the Hankel  con tour  and where we have set r = ~ ~ for brevity. 
We evaluate (C.1) by the method  of steepest descent. Let  

S = 2 + 21/3t, y = 21/3z (C.2) 

Then for 121 ~ 1 with larg 2[ < n, 

U(q, z + 22) = 24/31"(2 z - r 2) e - (;'2- r2) log ;.e+~2/2S(2, y)  (C.3a) 

with 

1 I e x p ( y t - l t 3 ) [ 1  + 0 ( 2 - 2 / 3 ) ]  dt 
S(2, y) = 2zc----i n' (C.3b) 
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Deforming the contour  on to  the imaginary axis now yields Airy's 
function ~13) 

S(2, y )  ~ a i ( y )  + 0 ( 2  2/3) (C.4) 

So when y = 21/3z = O(1), 

U(q, z + 22) ~ (2~) 1/2 21/3e ~;2- r2) l~ ;'e ;~2/2 Ai(21/3z) (C.5) 

for 121 >> 1 with larg 21 < z. However,  U(q, z + 22) solves 

Uzz = (2z + z2/4 + r 2 - �89 U (C.6) 

N o w  (C.6) has no distinguished limits between 21/3z= O(1) and z =  O(1). 
Therefore (C.5) is also valid as 121 --* oo with [arg 21 < n and with z fixed. 

Finally, similar arguments  show that for any fixed k 

~ U(q, z + 22) ~ (2~) ~/2 2~/3e ~;2- r2)~og ;e -~'2/2g~ Ai(2~/3z) (C.7) 

for 12[ >> 1 with larg 21 < z. 
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